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Abstract

Motivation: Reprogramming somatic cells into neurons holds great promise to model neuronal de-

velopment and disease. The efficiency and success rate of neuronal reprogramming, however,

may vary between different conversion platforms and cell types, thereby necessitating an un-

biased, systematic approach to estimate neuronal identity of converted cells. Recent studies have

demonstrated that long genes (>100 kb from transcription start to end) are highly enriched in neu-

rons, which provides an opportunity to identify neurons based on the expression of these long

genes.

Results: We have developed a versatile R package, LONGO, to analyze gene expression based on

gene length. We propose a systematic analysis of long gene expression (LGE) with a metric termed

the long gene quotient (LQ) that quantifies LGE in RNA-seq or microarray data to validate neuronal

identity at the single-cell and population levels. This unique feature of neurons provides an oppor-

tunity to utilize measurements of LGE in transcriptome data to quickly and easily distinguish neu-

rons from non-neuronal cells. By combining this conceptual advancement and statistical tool in a

user-friendly and interactive software package, we intend to encourage and simplify further investi-

gation into LGE, particularly as it applies to validating and improving neuronal differentiation and

reprogramming methodologies.

Availability and implementation: LONGO is freely available for download at https://github.com/

biohpc/longo.

Contact: yooa@wustl.edu or ted.ahn@slu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Both RNA microarray and RNA sequencing (RNA-seq) are well-

matured techniques for the study of global and differential gene

expression to infer underlying cellular regulatory networks in organ-

isms. They have shown associated results for the same biological

samples that have been analyzed using both technologies after nor-

malizing the RNA-seq data into read counts per millions (CPM)

(Malone and Oliver, 2011). Many algorithms have been developed

to state the global and differential gene expression for both RNA

microarray and RNA-seq techniques, but R Bioconductor packages

are the most widely used tools for gene expression analysis (Love

et al., 2015). Bioconductor provides well-developed suits including

DESeq2 (Love et al., 2014), EdgeR (Robinson et al., 2010) and

limma (Ritchie et al., 2015) for gene expression with the genome-

wide detection of differentially expressed genes between samples

from different conditions. Together with the growing popularity of

deep-sequencing techniques, unbiased and high-throughput single-

cell RNA-seq methods enable the transcriptome analysis of individ-

ual cells (Kolodziejczyk et al., 2015).
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Non-neuronal somatic cells can be directly reprogrammed into

functional neurons (Abernathy et al., 2017; Mertens et al., 2016),

and there is a growing interest in innovating and improving neuron-

al reprogramming methods due in part to the promise of modeling

human neurological disorders using patient cells. However, these

efforts are hindered by the lack of reliable measures for neuronal

identity. Electrical activity, one hallmark of neurons, can only be

measured in a handful of cells in a given experiment and can be

biased, as cells targeted for analysis may not be representative of the

entire population. Expression of a small subset of neuronal proteins

measured by immunocytochemistry (ICC) is also used to mark neur-

onal identity but is often subjective and highly variable.

Furthermore, interpretation of ICC is unreliable, given that extrinsic

factors used during neuronal reprogramming may selectively in-

crease the expression of several neuronal genes without necessarily

resulting in complete cell-fate transition. Whole transcriptome data

has potential to overcome these limitations, and several complex

computational approaches such as iterative principal component

analysis (PCA) and iterative weighted gene co-expression network

analysis (WGCNA) have been successful in classifying cell types

(Tasic et al., 2016). However, these methods require a positive con-

trol and at least 15 samples for accuracy. A simpler and more easily

assessable measure of neuronal identity at the transcriptome level

would greatly facilitate the development and validation of neuronal

reprogramming methods.

Recent studies have shown that long genes (>100 kb from tran-

scription start to end) are selectively expressed in neurons (Gabel

et al., 2015; King et al., 2013; Sugino et al., 2014). This unique fea-

ture of neurons may provide an opportunity to utilize measurements

of long gene expression (LGE) in transcriptome data to quickly and

easily distinguish neurons from non-neuronal cells. We therefore

developed LONGO (https://github.com/biohpc/longo), an open

source computational package based in R with the interactive web-

supporting library, R-Shiny, that standardizes measurement of LGE

within RNA-seq and microarray data formats. By providing an inter-

active and convenient analysis of LGE within transcriptome data,

LONGO allows researchers to identify neurons, and to explore gene

ontology (GO) terms associated with enriched neuronal genes.

2 Materials and methods

2.1 LONGO algorithm and framework
We developed LONGO, an R package that takes gene expression

data from transcriptome experiments (e.g. RNA-seq or RNA micro-

array, as can be found on the Gene Expression Omnibus (GEO;

Edgar et al., 2002)) as inputs from species represented on the

ENSEMBL BioMart project (Smedley et al., 2015). Figure 1 shows

an overview of the LONGO algorithm using Rat BodyMap data

(Yu et al., 2014). The length of genes from the user-specified species

is calculated from gene start and stop positions, which are retrieved

automatically using the biomaRt package (Durinck et al., 2009).

Gene-length dependent expression of samples is then calculated using

a sliding window of genes sorted in ascending order by the length of

the genes. LONGO quantile normalizes and filters input data (option-

al), calculates the median expression (or mean expression optionally)

of genes binned by length (default genes per bin: 200), and then con-

secutively calculates the expression of the next bin (default step size:

40 genes). LONGO comes in two versions: one with a local HTML

GUI for interactive work using the R Shiny package (LONGO) and

one without a GUI for batch processing of data files (LONGOcmd).

One strength of LONGO is provided through interactive plots—users

have the option to modify parameters such as bin size, step size, slid-

ing window mean or median, graph scales, as well as which samples

are used as controls for downstream analyses. The significant differ-

ence of gene-length dependent expression is statistically tested by the

Jensen-Shannon divergence (JSD) and the long gene quotient (LQ),

which we develop herein. In addition, LONGO shows plot of

p-values generated using the Wilcox test comparing the binned gene

expression values to the control.

2.2 Measuring Jensen-Shannon divergence
The Kullback-Leibler divergence (KLD) is a non-commutative measure

of the difference between two probability distributions P and Q, typic-

ally P representing the ‘true’ distribution and Q representing an arbi-

trary probability distribution. One symmetrized and smoothed version

of the KLD is the JSD (Endres and Schindelin, 2003), defined as

DJS PjjQð Þ ¼ 1

2
DKL PjjMð Þ þ 1

2
DKL QjjMð Þ

where M¼0.5(PþQ) and the KLD is defined to be

DKL PjjQð Þ ¼
X

i

P ið Þlog
P ið Þ
Q ið Þ

where QðiÞ 6¼ 0, and the summation is taken over histogram bins.

Therefore, for gene expression data ordered by gene length, we set

Fig. 1. Illustration of LONGO output using Rat BodyMap data. RNA-seq of rat

tissues from Rat BodyMap (Yu et al., 2014): non-neuronal tissues (black) and

brain tissues (red). (a) User inputs gene expression table into LONGO, which

associates gene lengths with each gene. (b) LONGO calculates rolling median

per user-defined parameters (For this figure: 200 gene bins, 40 gene step).

(c) LONGO calculates partial increasing JSD from short genes to long genes

between each sample and a user-defined control sample. (d) LONGO calcu-

lates a partial LQ (left) and final LQ (right). (e) LONGO identifies GO term by

gene set enrichment analysis
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P as the distribution from the control sample, and Q the distribution

obtained from each of the testing samples. Smaller values of KLD

represent more similar distributions. LONGO first measures the

JSD for the shortest genes in two samples, then iteratively re-

computes the JSD after adding the next longest until all genes in re-

spective datasets have been added. The final JSD is the JSD between

all expressed genes.

2.3 Developing the long gene quotient
To systematically discover disproportionately elevated long versus

short gene expression between two samples, we adapted the JS di-

vergence to generate the long gene quotient. LONGO first removes

all genes whose gene length is less than the median gene length (typ-

ically �30 kb) for the dataset, which allows a clearer assessment of

differences in long gene expression. Then LONGO calculates the

partial LQ (PLQ) for any testing sample Q (i ¼ 1; . . . ;n), which we

define as

PLQi ¼
D0JSðPjjQiÞ

maxfDJS PjjQj

� �
; j ¼ 1; . . . ;ng

where P represents the distribution of the control sample and D’JS
only considers long genes (>150 kb). The PLQ describes the relative

change in JSD of each sample compared with the maximum changes

of JSD across all samples, so its magnitude ranges from 0 to 1.

Because the underlying JSD does not distinguish the directional-

ity of changes, we define the final LQ as LQ¼ S(PLQ), where

S¼�1 if mean(Q)<mean(P). This ensures that LQ is positive only

if LGE is higher in the testing sample than in the control sample.

The LQ is dependent on the control sample selected, as well as the

sample with the most extensive LGE. Therefore, while LQ is effect-

ive at distinguishing neuronal from non-neuronal cells in the absence

of a positive control, we strongly encourage including a positive con-

trol neuronal sample. The LQ is also dependent on the sliding win-

dow bin and step size; for the default of 200 genes per bin with a 40

gene-step, using the median, neuronal cells typically exceed an LQ

of 0.25.

In addition to LQ, the correlation between binned gene expres-

sion and median length of bins (default genes per bin: 200; default

step size: 40 genes) for genes longer than 100 kb also identifies neur-

onal sample when highly positive (Supplementary Fig. S1). Together

with LQ, these metrics reliably distinguish neurons from non-

neuronal samples.

2.4 Gene ontology (GO) analysis
Gene Ontology (GO) analysis allows understanding of the overall

differences of gene expression among multiple samples. This is

accomplished by utilizing the GO database. The GO database con-

tains information that links genes to GO terms. These GO terms can

be broad, encompassing a large variety of biological functions, or

narrow, including only a few specific functions. This allows the

overall expression patterns of the genes to be categorized and then

quantitatively measured. The hierarchies of GO terms provide an

overview of the intersection of genes to biological functions. This

intersection provides an insight into to the different cellular mecha-

nisms by simplifying the data. One problem with using GO analysis

is that as new information is discovered the genes for GO terms can

be changed. Using an up-to-date database of GO terms can be used

to avoid this problem but may lead to different results over time.

Since the GO terms are determined by previous knowledge it can

limit the potential to discover new features of genes.

The LONGO package handles GO analysis by utilizing topGO

(Alexa et al., 2006). LONGO allows multiple parameters in the

GO analysis step. The main two are the statistical test and the

method for graphing. The statistical test is used to determine the

significance of the biological functions and the method for graph-

ing is used to determine how the significant nodes should be

graphed.

2.5 Cellular reprogramming and analyses
Human adult dermal fibroblasts from healthy individuals were

acquired from the Coriell Institute for Medical Research: ND34769

(female, 68 years old at sampling; WT4) and AG04148 (male,

56 years old; WT2). Cells were reprogrammed as described in Victor

et al. (2014) using a lentiviral cocktail of rtTA, pTight-9-124-BclxL,

CTIP2, MYT1L, DLX1 and DLX2. Immunocytochemistry was also

performed as described in Victor et al. (2014) using primary anti-

body of rabbit anti-b-III tubulin (BioLegend, 1:2000) and secondary

antibody of anti-rabbit IgG conjugated with Alexa-488 (Invitrogen,

1: 1000). Images were captured using a Leica SP5X white light

laser confocal system with Leica Application Suite Advanced

Fluorescence 2.7.3.9723. RNA-seq raw data was recently published

(Victor et al., 2018). Briefly, RNA was extracted from converted

neurons and isolated with TRIzol reagent (Thermo Fisher Scientific)

per manufacturer’s instructions. After treating samples with

Ribo-Zero kit (Illumina), cDNA library was sequenced in Illumina

HiSeq 2500. Sequence reads were aligned to the human genome

(hg38) with STAR v2.4.2a. Gene counts were derived from the

number of uniquely aligned unambiguous reads by Subread:

featureCount, version 1.4.6, with GENCODE gene annotation

(V23).

3 Results

3.1 LGE identifies neurons upon differentiation and

maturation during development
To demonstrate LGE as an indicator of neuronal identity, we first

analyzed RNA-seq gene expression profiles at the tissue level from

the Rat BodyMap database (Yu et al., 2014), which profiled 32 rats

across 10 different organs (i.e. adrenal gland, brain, heart, kidney,

liver, lung, muscle, spleen, thymus and testis or uterus), using

LONGO. Consistent with previous reports of LGE in brain tissues

(Gabel et al., 2015), we found that LONGO clearly distinguishes

the brain from all other non-neuronal tissues with an LQ of 0.31

(Fig. 1b). Additionally, by measuring the collective levels of long

gene expression, neuronal samples become readily identifiable in a

population of non-neuronal samples without depending on the indi-

vidual expression levels of known neuronal markers (Supplementary

Fig. S1).

To further evaluate LGE in assessing post-mitotic neurons during

neural development, we used LONGO to analyze transcriptome

datasets collected from distinct regions of the developing human

cortex (Miller et al., 2014). Interestingly, LGE analysis distinguished

cortical and subcortical regions (i.e. intermediate zone, subcortical

plate, cortical plate, subpial granular zone and marginal zone;

max LQ of 0.55) from other zones in which proliferative neural pro-

genitors are prominent (i.e. ganglionic eminences, ventricular and

sub-ventricular zones; max LQ of 0.13) (Fig. 2a). Our finding is con-

sistent with the neuronal populations observed in cortical and sub-

cortical regions (Miller et al., 2014), and the increase in LGE likely

reflects the number of differentiated neurons within each layer. To

further pinpoint the cellular source of differential LGE, we analyzed

i424 M.J.McCoy et al.
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LGE in different cell types isolated by fluorescence activated cell

sorting (FACS) from the cortex (Zhang et al., 2016), and found that

only neurons displayed significantly enriched LGE in contrast to

other cell types including astrocytes and oligodendrocytes, suggest-

ing that increased LGE in whole cortex is likely due to neurons

(Supplementary Fig. S2a). Similarly, LGE analysis of single-cell

RNA-seq of mouse visual cortex (Tasic et al., 2016) identified

increased LGE and LQ only for neurons, further validating LGE as

a unique feature of neurons (Fig. 2b). Furthermore, by applying

LONGO to data generated by Habib et al. (2016), where single-

nucleus RNA-seq was combined with pulse-labeling of proliferating

cells by EdU to track transcriptional dynamics of newborn neurons

within the neurogenic niche of the adult hippocampus, we found

that LGE increased as neural progenitor cells (NPCs) exited the cell

cycle and continued to differentiate into neurons and mature in vivo

(Fig. 2c), perfectly matching the maturation trajectory determined

by Habib et al., and validating LGE as a reliable marker for post-

mitotic mature neurons. In order to address whether increased

LGE is also a feature of cultured neurons, we applied LONGO to

the transcriptome data of motor neurons differentiated from mouse

embryonic stem cells (ESCs) (Mahony et al., 2011). Although minor

differences in LGE were observed between embryoid body forma-

tion and induction of NPCs by retinoic acid, the largest increase in

LGE occurred when progenitors differentiated into post-mitotic

motor neurons (Supplementary Fig. S2b). This finding is consistent

with the notion that onset of LGE occurs during differentiation

of NPCs to neurons, which is also apparent in tissue culture condi-

tions. Together, our findings demonstrate LGE as a hallmark of

neuronal development assayed at the single-cell and population

levels.

3.2 LGE identifies neurons successfully reprogrammed

from non-neuronal cells
Based on the authenticity of LGE as a transcriptomic feature of neu-

rons both in vivo and in tissue culture, we applied LONGO to evalu-

ate cells generated by neuronal conversion using datasets from

transcription factor-based (Colasante et al., 2015; Treutlein et al.,

2016), microRNA-based (Victor et al., 2014) and small molecule-

based (Hu et al., 2015) approaches to convert mouse or human

fibroblasts to neurons. Because we routinely observe LQ exceeding

0.25 in neurons (Fig. 2 and Supplementary Fig. S3), we use this

value as the threshold to indicate successful neuronal conversion.

First, we used a transcriptome dataset in which neuronal conversion

of mouse embryonic fibroblasts (MEFs) was monitored at a single

cell level (Treutlein et al., 2016) and applied LONGO to analyze dif-

ferential LGE between successfully reprogrammed cells and cells

that failed to convert (Fig. 3a). Only successfully converted neurons

showed increased LGE and an LQ value substantially above 0.25,

validating LGE analysis as a reliable approach to assess neuronal

conversion. To test microRNA-based neuronal conversion (Victor

et al., 2014), we prepared RNA from an unpurified population of

human striatal medium spiny neurons (MSNs) converted from fibro-

blasts and performed RNA-seq. When we applied LONGO to con-

verted MSNs, we observed a dramatic increase in LGE similar to

ESC-derived human neurons (Fig. 3b), despite that samples were un-

purified. Furthermore, we find that LONGO detects variable con-

version efficiencies inherent in different fibroblast samples—one

fibroblast cell line (HAF2) that we previously found to display a

lower conversion efficiency (Supplementary Fig. S4) yielded an aver-

age LQ barely reaching 0.25, whereas the other fibroblast cell line

(HAF1) yielded an average LQ of 0.67 (Fig. 3b). Analysis of direct

neuronal reprogramming of human fibroblasts by small molecules

(Hu et al., 2015) also revealed increased LGE approaching the levels

obtained by ESC-derived neurons by prolonged treatment with small

molecules (Supplementary Fig. S5a). However, knockdown of

PTBP1, which reportedly generates neuronal-like cells from HAFs

(Xue et al., 2016), does not increase LGE at the population level

(Supplementary Fig. S5b). Under these conditions, Xue et al.

reported little expression of neuronal markers, such as MAP2 and

NeuN, and the absence of neuronal electrical activity (Xue et al.,

2016), which is consistent with our finding of unaltered LGE. It will

be interesting to apply LGE analysis to sequential knockdown of

PTBP1 and PTBP2, which reportedly generated more functional

neurons (Xue et al., 2016). Finally, we analyzed RNA-seq data from

MEFs overexpressing neuronal transcription factors Foxg1, Sox2,

Ascl1, Dlx5 and Lhx6, which has been previously reported to gener-

ate GABAergic interneurons (Colasante et al., 2015). Cells were

purified by FACS based on the expression of GAD67, a marker for

GABAergic interneurons, but were not electrically active at this

time-point (Colassante et al. reported that cells became electrically

active only after 4 weeks of co-culture with rat hippocampal neu-

rons). Supporting LGE as a marker for mature neurons, we only

detected increased LGE for control interneurons (GAD67), not for

induced GABAergic interneurons (iGABA) in monoculture (Fig. 3c).

3.3 GO analysis of neuronal differentiation
GO enrichment analysis of mouse ESC differentiation to motor neu-

rons in vitro (Mahony et al., 2011) is shown in Figure 4. The experi-

ment has multiple GO terms identified as being significant.

Rectangle color represents the relative significance, ranging from

dark red (most significant) to bright yellow (least significant). The

two lines show the GO identifier and a trimmed GO name.

Fig. 2. LONGO output of neuronal differentiation and maturation during de-

velopment. From left to right, reference for input data, rolling media of gene

expression versus length (200 gene bins, 40 gene step), partial LQ and final

LQ. (a) Layers of the developing human cortex (Miller et al., 2014): ganglionic

eminences (MGE, LGE, CGE; blue); ventricular zones (VZ and SVZ; black); and

post-mitotic zones (SG, MZ, CP, SP and IZ; red). (b) scRNA-seq neural cell

subtypes from mouse visual cortex (Tasic et al., 2016): glial cells (endothelial

cells, microglia, astrocytes, oligodendrocytes and OPCs) shown in black;

neuronal subtypes (Th, Pvalb, L4, L2.3, L5, Chodl, Sst, Vip, Ndnf and L6)

shown in red. (c) Div-seq of adult newborn neurons in the neurogenic niche

of mouse hippo-campus (Habib et al., 2016): neural stem cells (NSCs), neural

progenitor cells (NPCs) and neuroblasts (NBs) shown in black; immature neu-

rons (IN) shown in red. Samples are numbered according to their maturity

(Habib et al., 2016)
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The two categories identified are embryogenesis and neurogen-

esis. These results are in line with the source of the dataset that was

an experimental differentiation of embryonic stem cells to neurons.

As the cells differentiate, the genes they express are altered providing

the enriched GO terms.

4 Discussion and conclusion

One of the known correlates of gene length is the levels of alterna-

tive splicing (McGuire et al., 2008), which is a feature also enriched

in vertebrate and invertebrate nervous systems (Barbosa-Morais

et al., 2012; Jelen et al., 2007; Merkin et al., 2012). Some of these

long genes encode over 20 000 different protein isoforms, and are

uniquely expressed in individual neurons, endowing each neuron

with a unique molecular profile (Miura et al., 2013). So, while each

neuron expresses copies of long genes, these copies are not identical

to even neighboring neurons of the same tissue. This allows us to

measure the expression of long genes collectively to determine if a

cell or tissue is neuronal but does not typically provide the resolution

to determine differences between one type of neuron versus another,

or one type of neural tissue versus another.

For investigators interested in adopting an existing reprogram-

ming technique in their research programs, LONGO provides a

metric for evaluating the efficiency of different techniques. The ro-

bustness of LGE analysis provided by LONGO and the steadily

declining cost of transcriptome analyses lead us to strongly advise

investigators who perform neuronal reprogramming or differenti-

ation to routinely generate transcriptome data and analyze LGE to

confirm neuronal identity.

Secondary to the LGE feature, the gene ontology analysis pro-

vides another easily accessible view of the transcriptome data.

LONGO contains a simplified point and click approach to predict

neuronal identity and determination of differentially enriched genes.

The ease of input options allowing multiple gene identifiers for mul-

tiple species to determine the gene length and the connected GO

terms provides a low barrier of entry in using LONGO compared to

Fig. 3. LONGO output of somatic cell direct neuronal reprogramming. From left to right, reference for input data, rolling median of gene expression versus length

(200 gene bins, 40 gene step), partial LQ and final LQ. (a) Direct reprogramming of mouse embryonic fibroblasts (MEFs) to neurons by transcription factors

(Treutlein et al., 2016): MEFs, myocytes, intermediate reprogramming (D2 and D5) and induced MEFs (D2) shown in black; failed reprogramming (D5 and D22)

shown in purple; early (D5) and late (D22; dotted-line) successful reprogramming in red. (b) Direct reprogramming of human adult fibroblasts (HAFs) to striatal

medium spiny neurons (MSNs) by microRNAs: HAFs from two different cell lines (black); MSNs derived from HAF2 (MSN2; purple); ESC-derived neurons(Gill

et al., 2016) (dotted-line) and MSNs derived from HAF1 (MSN1) shown in red. (c) Direct reprogramming of MEFs to iGABA by Foxg1, Sox2, Ascl1, Dlx5 and Lhx6

(Colasante et al., 2015): MEFs (black); iGABA (dark purple); GAD67þ interneurons (red)
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other tools. The ability to simply alter the options for analyzing the

data creates a simple, easy to use and flexible tool.

As interest in modeling neuronal cell fate acquisition and neuro-

logical diseases using reprogrammed neurons continues to grow, so

will the need to validate and improve methodologies for neuronal

reprogramming. Toward this end, we have proposed LGE as a sim-

ple and easily assessable metric of neuronal identity and have pro-

vided a computational package for its analysis in RNA-seq as well

as RNA microarray data. This tool and conceptual advancement

will greatly facilitate and expedite exploration of LGE in other sys-

tems and experimental conditions.
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